Sarah Kuper Sarah Shobe Andy Hill

- What is a refinery?
 - Takes crude oil and converts it into gasoline
 - Distills crude into light, medium, and heavy fractions
 - Lightest fractions gasoline, liquid petroleum gas
 - Medium fractions kerosene and diesel oil
 - Heavy fractions gas oils and residuum

"Refining is a complex operation that depends upon the human skills of operators, engineers, and planners in combination with cutting edge technology to produce the products that meet the demands of an intensely competitive market."

Sources: http://www.exxon.mobil.com/UK-English/Operations/UK_OP_Ref_RefOp.asp and http://static.flickr.com/18/24007819_4d67ab2c0b.jpg

- Planning groups in a refinery attempt to optimize the refinery's profits by purchasing specific amounts of different crudes
- Based on:
 - Projected market demands and prices
 - Unit capabilities
 - Planned turnarounds

- Planning Example
 - Winter
 - high fuel oil demand → more fuel (heating) oil produced
 - Summer
 - lower fuel oil demand → more gasoline produced

- LP models use average operating conditions
- Graph shows that average operating conditions may not optimize particular unit (CRU)

Current Models

- Current models operate linearly (LP)
 Black Box Theory
- PIMS (by Aspentech)
- RPMS (by Honeywell Hi-Spec Solutions)
- GRMPTS (by Haverly)

Black Box Theory

Modeling Unit Operations

Modeling Unit Operations

 $F_{S,out} = f(T, P, F)$

General Goal

- To effectively model a refinery's unit operations in the overall planning model.
- Bangchak refinery in Thailand is used as a case study.

More Specific Goals

- Model Hydrotreaters
- Model Catalytic Reformers
- Model Isomerization
- Tie Unit Operations to GRM
 Add Operating Costs
- Tie Unit Operations to blending
 - Calculate blending properties
- Integrate Fuel Gas system
- Create Hydrogen balance

Original LP Model

LP model developed

Operates using Black Box theory

Optimizes purchased crudes and additives

Evaluates uncertainty and risk

Bangchak Refinery

Bangchak Refinery

- Hydrotreating
 - NPU2
 - NPU3
 - HDS
 - KTU
- Catalytic Reforming
 - CRU2
 - CRU3
- Isomerization
 - ISOU

Bangchak Model

📲 H:\Refi	inery Planning'	Model\LP	_bangchak_	_model1.g	ms								X
LP_bangcha	ak_model1.lst	_bangchak_	_model1.gms										
	gsp(u)	For th	e set of	GSP /GS	P91,GSP9	5/							~
	fop(u)	For th	e set of	FOP /FO	1P,FO2P/								
	q	For th	e set of	all pro;	perties								
		/YD	percent	yield									
		RON	researc	h octan	e number								1
		RVPI	reid va	por pre	ssure in	dex							3
		ARO	percent	aromat	ic conte	nt							
		NAP	percent	naphth	ene cont	ent							
		FPI	freezin	g point	index								
		CI UFO	cetane	index		~							
		V50	Viscosi	ty fact	DE 8 50	-							
		S 100	viscosi	sulfur	content	6							
		PPT	nour no	int ind	PY								
		SG	snecifi	c gravi	L.V.								
		RVP	reid va	por pre:	ssure, k	Pa							
		Vis50	viscosi	ty 0 50	c								
		Vis10	0 viscosi	ty 0 10	D C								
		PP	pour po	int C	1								
	a(q)	For th	e set of	propert	ies /YD,	RON, RVPI	ARO, NAP	,FPI,CI,	V50, V100,	S, PPI, SC	3/		
	(q) d	For the set of properties /RON, RVP, ARO, NAP, FPI, CI, Vis50, Vis100, S, PP, SG/											
	1	Limit	level	/lower	,upper/								
	s	Scenario /s1*s200/											
	;												
alias	s (u,up)	:											
Table	pro(o,c	:,a)	Estimate	d prope:	rty of o	utlet con	modity	from eac	h crude c	il.			
		RON	RVPI	ARO	NAP	FPI	CI	V50	V100	S	SG	PPI	
*			index	82V	\$2V	index	index	index	index	₩t.	S.G.	index	
OM.LN	N.	69.50	17.686	1.2	7.52								
OM. M	N	49.20	2.795	4.25	21.10								
ON H	N	40.60	0.494	8.24	21.31	10.00	15 0	2 2076	4 25/0	0 100	0 7044	10 595	
ON DO	n.			11.94		10.50	50.4	16 7776	-4.2009	0.100	0.7044	12.070	
ON FO	2						37.1	37 0861	31 0178	1 038	0.0347	1146 620	
TP.LM	V.	81.70	16,432	1.78	14.24			0110001	0110110	1.500	012001	1110.000	
TP.M	u.	76.00	2.578	5.11	33.71								
TP.H	V	68.20	0.653	13.09	33.25								
TP.IF	K	10.000		16.82		10.98	45.1	2.6846	-5.4923	0.004	0.7857	30.788	
TP.DC	o			W1897087		0.00.946.00	59.3	14.8210	7.2650	0.034	0.8271		V
<	III.											>	
		74											111-1

, , ,				
_bangchak_model1.lst LP_bang	chak_model1.gms			
*** LNT model ***				^
ei_2(t)		af('LNT',t) =e= aa('NPU2','LN','LNT',t) ;		- Salaha
ei_2_1(t)		ao('LNT','LN',t) =e= af('LNT',t) ;		
ei_2_2(t)		ao('LNT','LN',t) =e= aa('LNT','LN','GSP91',t) + a	a('LNT','LN','GSP	95',t)
*** REFT model ***				
ei 3(t)	2.2	af('REFT',t) =e= sum(cru, aa(cru,'REF','REFT',t))	;	
ei 3 1(t)		ao('REFT','REF',t) =e= af('REFT',t)	;	
ei_3_2(t)		ao('REFT','REF',t) =e= aa('REFT','REF','GSP91',t)	+ aa('REFT','REF	','GSP95
*** HNT model ***		CONTRACTOR ENGINEERS ENGINE CONTRACTOR ENGINEERS ENGINEERS ENGINEERS		
ei 4(t)		af('HNT',t) =e= sum(npu, aa(npu,'HN','HNT',t)) ;		
ei 4 1(t)		ao('HNT','HN',t) =e= af('HNT',t) ;		
ei 4 2(t)		ao('HNT','HN',t) =e= aa('HNT','HN','GSP91',t) + a	a('HNT', 'HN', 'GSP	95',t)
*** MTBET model ***				
ei 5(t)	2.2	ao('MTBET','MTBE',t) =e= aa('MTBET','MTBE','GSP91	',t) + aa('MTBET'	,'MTBE',
*** BCCT model ***				
ei 6(t)	•	ac('DCCT','DCC',t) =e= aa('DCCT','DCC','GSP91',t)	+ aa('DCCT','DCC	', 'GSP95
*** FGT model ***		Construction and and and an antipation and a statements		
e3 74(t)		af('FGT',t) =e= sum(u\$ffgt(u), aa(u,'FG','FGT',t)) ;	
e3 75(t)		<pre>ao('FGT','FG',t) =e= af('FGT',t) ;</pre>		
*** LPGT model ***				
e3 76(t)		af('LPGT',t) =e= sum(u\$flpgt(u), aa(u,'LPG','LPGT	",t)) ;	
e3 77(t)	2.2	<pre>ao('LPGT','LPG',t) =e= af('LPGT',t) ;</pre>		
*** GSP91 and GSP 95	model ***			
e3 78(qsp,t)	•••	af(qsp,t) =e= sum((u,c)\$fqsp(u,c,qsp), aa(u,c,qsp	(,t)) ;	
e3 79(t)		ao('GSP91','SUPG',t) =e= af('GSP91',t) ;	1999-1999 (A)	
e3 80(t)		ao('GSP95','ISOG',t) =e= af('GSP95',t) ;		
mtbe1(t)		aa('MTBET','MTBE','GSP91',t) =1= af('GSP91',t) *	0.1 ;	
mtbe2(t)		aa('MTBET','MTBE','GSP95',t) =1= af('GSP95',t) *	0.1 ;	
*** JPT model ***				
e3 86(t)	22	af('JPT',t) =e= aa('KTU','JP-1','JPT',t):		
e3 87(t)	222	ao('JPT','JP-1',t) =e= af('JPT',t) :		
*** DSP model ***	2/2/			
e3 91(t)		af('DSP',t) =e= sum((u,c)\$fdsn(u,c), aa(u,c,'DSP'	.tii :	
e3 92 (t.)		an('DSP','HSD',t) =e= af('DSP',t) :		
*** FOID FO2D and B	NVSP model	***		
e3 96(fon.t)	orbr modol	af(fon.t) =e= sum((u.c)\$ffon(u.c), aa(u.c.fon.t))		
efovs(t)		af('FOVSP'.t) === aa('CDH2'.'FO'.'FOVSP'.t) :		
e3 97(t)		an('F01P','F01',t) =e= af('F01P',t)		-
e3 98 (t)	10.00	an('FO2P' 'FO2' t) mem af('FO2P' t)		
a3 99 (t)	100	ac('FOWSP' 'FOWS' t) set of ('FOWSP' t)		
vie1(t)	1. T	cum(cdu se(cdu 'IV' 'F01P' t)) set of ('F01P' t)	* (recipe (LEC1)	TRUN / 100
X TO T (0)	5 9 5 9	sumpour, adjour, is , forr , c)) -e- al('forr', c)	(recthe(LOL '	TU 1/ TOPA

Hydrotreating

- The purpose of hydrotreating is to remove undesired impurities from the stream
 - Sulfur
 - Nitrogen
 - Basic Nitrogen
 - Aromatics

Hydrotreating Reactions

1.	Desulfurization:	
	a. Mercaptans;	RSH + H2 RH + H2S
	b. Sulfides:	R2S + 2H2 -+ 2RH + H2S
	c. Disulfides:	(RS) ₂ + 3H ₂ → 2RH + 2H ₂ S
	d. Thiophenes:	нс-си
		HC CH + 4H2 + C4H10 +
2,	Denitrogenation:	

C4H4NH + 4H2+ C4H10 + NH2 C5H5N + 5H2 - C5H12 + NH3

CaHsOH + H2+ CaHa + H2O

C2H13OOH + 3H2 + C7H16 + 2H2O

 $CH + 4H_2 + C_4H_{10} + H_2S$

3. Deoxidation:

a. Pyrrole:

b. Pyridine:

a. Phenol: b. Peroxides:

4. Dehalogenation: Chlorides:

5. Hydrogenation; Pentane:

RC1 + H2 + RH + HC1 C5H10 + H2+ C5H12

6. Hydrocracking: C10H22 + C4H8 + C6H14 Most common non-hydrocarbon by-products: $-H_2S$ $-NH_3$

Hydrotreating PFD

Hydrotreating Model

- Langmuir-Hinshelwood kinetic rate law
- Main operating variables
 - Temperature (600-800℃)
 - Pressure (100-3000 psig)
 - H₂/HC ratio (2000 ft³/bbl)
 - Space Velocity (1.5-9.0)
 - Based on Flow Rate and Volume

Langmuir-Hinshelwood

$$r = -k \cdot \left[\frac{C_{S} \cdot C_{H_{2}}^{0.45}}{\left(1 + K_{H_{2}S} \cdot C_{H_{2}S}\right)^{2}} \right]$$

$$k = A \cdot e^{-\frac{E}{R \cdot T}}$$

$$K_{H_2S} = 41769.84 \cdot e^{\frac{2761}{R \cdot T}}$$

Where, k = rate constant $K_{H_2S} = adsorption equilibrium constant$ A = Arrhenius constantE = activation energy

HDS Inputs

- Variables
 Data
 - Temperature
 - Pressure
 - Flow Rate

– Sulfur weight percent*

- H₂/HC ratio (2000 ft³/bbl)
- Sizing constant (1.8E8)

*Sulfur weight percent is set as a constant due to small effect on percent conversion and specifying too many variables in the overall model causes non-convergence

Excel Model

🔟 Microsoft Excel - hydrotreater.HDS.xls 🔹 🖻 🔀															
🖼 Ele Edit View Insert Format Iools Data Window Help Type a question for help 🖌 🗗 🗙															
『 つう 見 A コ (2) (2) A TA A A A A A A A A A A A A A A A A A															
	Δ	B	C	D E	Ē	G	ни		K	1	M	Ň	0	P	0 1
1			0	<u> </u>		0			18	_		1.8	-		^
2	Pr (psi)	775													
3	Pr (kPa)	5341.9643		k0											
4	T (deg F)	680		4.27E+09											
5	T (deg C)	360													
6	т (К)	633						% conversi	on	s	0.466756				
7	R (kcal/molK)	0.001986		132000							and the second second second				
8	R(J/molK)	8.3145													
9	Flow Oil (bbl/day)	8430													
10	H2 / HC ft3/bbl	2000		0.08988	g/L										
11	mol/hr	8.85E+05													
12	SG Oil	0.89													
13	MW Oil	200		16.35							ppm				131.98
14	Flow Oil (g/hr)	49701324								0.00046	463.6245				127.58
15	Flow Oil (mol/hr)	248506.62													118.93
16	LHSV	2.66													94.07
17	Flow Hydrogen (mol/hr)	8.85E+05		ΔW (kg)		5.50E+05									
18	TOTAL FLOW (mol/hr)	1133101.6													
19	Cto (mol/m3)	1014.9885													
20	Cto (mol/cm3)	0.001015													
21				W (kg)		4.99E+07									
22		Sulfur	0.005						http://www	/.eia.doe.g	ov/oiaf/ser	vicerpt/uls	d/pdf/chap	ter5.p	df
23	Х	Nitrogen		VV(lb)		1.10E+08									
24	_	Basic Nitrog	gen						n tt p://www	/.ela.doe.g	ov/olat/ser	vicerptiuls	d/cnapter3	.ntmi	
20		Aromatic	4040 522						latter (hanna	, khoat oon	la d f elte e le	item 0.10 m als	c		
20		Nitrogon	1242.000	ke	kn	khn	kar		http://www.kbcat.com/web?g=bvdrotreater+model+kinetic8			2 dere:	-0222		
27	F_	Basic Nitro	0	5 /7E-02	NII .	NDII	r ai		http://www	ask.com/w	/neonle/ara	v/Naveen%	20Hvdroers	sysic: 	ndf
20		Aromatic	0	6.47 E-02					nup.////////////////////////////////////	.eng.uwo.ca	//people/ala	ynaveenn	2011yurocra	Ching	.pui
30				70581,8099				a/cm3				mol/cm3			
31			w	rs	m	rbn	rar	CS	cn	cbn	car	ch	ch2s	F	s
32			0	-2.9373E-05	0.00E+00	0.00E+00	0.00E+00	2.23E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	0.00E+00	1	.24E+03
33	HIDDEN	1	550000	-2.8932E-05	0.00E+00	0.00E+00	0.00E+00	2.20E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	1.45E-08	1	.23E+03
34		2	1100000	-2.8499E-05	0.00E+00	0.00E+00	0.00E+00	2.17E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	2.87E-08	1	.21E+03
35		3	1650000	-2.8074E-05	0.00E+00	0.00E+00	0.00E+00	2.14E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	4.28E-08	1	.19E+03
36		4	2200000	-2.7657E-05	0.00E+00	0.00E+00	0.00E+00	2.11E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	5.66E-08	1	.18E+03
37		5	2750000	-2.7248E-05	0.00E+00	0.00E+00	0.00E+00	2.09E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	7.02E-08	1	.16E+03
38		6	3300000	-2.6847E-05	0.00E+00	0.00E+00	0.00E+00	2.06E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	8.36E-08	1	.15E+03
39		7	3850000	-2.6452E-05	0.00E+00	0.00E+00	0.00E+00	2.03E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	9.69E-08	1	.13E+03
40		8	4400000	-2.6065E-05	0.00E+00	0.00E+00	0.00E+00	2.01E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	1.10E-07	1	.12E+03
41		9	4950000	-2.5685E-05	0.00E+00	0.00E+00	0.00E+00	1.98E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	1.23E-07	1	.11E+03
42		10	5500000	-2.5312E-05	0.00E+00	0.00E+00	0.00E+00	1.96E-04	0.00E+00	0.00E+00	0.00E+00	7.92E-04	1.35E-07	1	.09E+03
H 4	Image: Single Control of Co														
Ready														NUM	
-	stari 🚽 🕴 🕲 Sun Java Syst	: 🦉 🧐 Mozilla	a Firefox	😻 Downloads	Semov	able Di	🚞 Refinery Plann	💽 Micros	soft Pow	Refinery_	Plan 🔀	Microsoft Exce	🔇 🗞 🗸	🖸 🐉 🔽	3:29 PM

GAMS Model

H:\Refinery Planning\Model\newHDS.gms						
newHDS.gms						
<pre>for[s3 = 1 to card(s) ,</pre>						
Xc(s) = 0 + 1\$(ord(s) = s3);						
OFlow = sum(s, Xc(s)*scenarios(s,'f'));						
P2 = 101.325*P1/14.7 ;						
T2 = (T1-32)/1.8;						
T3 = T2 + 273;						
HFlow = OFlow*H2HC*28.3*0.08988/(2.02*24) ;						
OFlow1 = OFlow*158987*sg/24 ;						
OFlow2 = OFlow1/mw;						
Flow = HFlow+OFlow2 ;						
CtO = P2*1000/(R*T3);						
CtOb = CtO/1000000 ;						
SFlow = OFlow2*perc ;						
$ks = kO^* exp(-E/(R^*T3));$						
Kh2s = 41769.84 * exp(2761/(R*T3));						
delx = x/(card(y)-1) ;						
fs('0') = SFlow ;						
fh('O') = HFlow;						
cs('0') = CtOb*SFlow*mw/Flow;						
ch('0') = CtOb*HFlow/Flow;						
ch2s('0') = 0;						
rate('0') = $-ks*60*cs('0')*ch('0')**0.45/(1+Kh2s*ch2s('0'))**2$;						
fs('1') = fs('0') + rate('0') * delx ;						
fh('1') = fh('0') + rate('0') * delx ;						
cs('1') = CtOb*fs('1')*mw/Flow ;						
ch('1') = CtOb*fh('1')/Flow;						
ch2s('1') = ch('0')-ch('1');						
rate('1') = -ks*60*cs('1')*ch('1')**0.45/(1+Kh2s*ch2s('1'))**2 ;						
fs('2') = fs('1') + rate('1') * delx ;						
$fh(!2!) = fh(!1!) + rate(!1!) * delv \cdot$	×					
	>					

Catalytic Reforming

- Process used to increase the octane number of light crude fractions
- Converts low-octane naptha into highoctane aromatics
- High octane product is useful for creating premium gasolines
- Hydrogen is the by-product

Catalytic Reforming Process Flow Diagram

Catalytic Reforming Unit Operating Conditions

- Low pressures (30- 40atm)
- High Temperatures (900- 950 °F)
- Feedstock
 - Heavy naphtha from hydrotreating unit
- Catalyst
 - Platinum bi-function catalyst on Alumina support
- Continuous process
 - Catalyst is removed, replaced, and regenerated continuously and online

Catalytic Reforming Model

Model Purpose

- Predict the output of system through simplified inputs
- Optimal Operating Parameters = Maximum Yield and Profit
- Model Method
 - Differential equations with changeable input parameters
- Model Challenges
 - Complicated components (pseudo)
 - Extreme operating conditions
 - Complicated reactions

Catalytic Reforming Model

Input Parameters

- Temperature
- Pressure
- Volumetric Flowrates
- Component
 Composition (Mole %)
 - Napthenes
 - Paraffins
 - Aromatics

Output Parameters

- Reformate
- Hydrogen
- Liquefied Petroleum Gas
Catalytic Reforming Components

- Paraffins
 - Straight chain hydrocarbons
 - Highest H:C ratio

- Napthenes
 - Cyclic hydrocarbons
 - Medium H:C ratio

- Aromatics
 - Cyclic hydrocarbons
 - Lowest H:C ratio

Catalytic Reforming Reactions

• Dehydrogenation

Isomerization

- Aromatization
- Hydrocracking

n-Heptane --- Toluene + 4 H₂

нс сн ► I II нс с–

Catalytic Reforming Model

- Simplified Reactions and Equations from Smith (1959)
- Modeled Reactions
 - Dehydrogenation, Cyclization, Aromatization, and Hydrocracking

(1)Napthenes \leftrightarrow aromatics + 3 * H_2 (2)Paraffins \leftrightarrow napthenes + H_2 (3)Hydrocracking _ of _ paraffins (4)Hydrocracking _ of _ napthenes

Catalytic Reforming Stoichiometry

 $(1)C_nH_{2n} \longleftrightarrow C_nH_{2n-6} + 3H_2$

$$(2)C_nH_{2n+2}\longleftrightarrow C_nH_{2n}+H_2$$

$$(3)C_{n}H_{2n+2} + \left(\frac{n-3}{3}\right)H_{2} \longrightarrow \frac{n}{15}C_{1} + \frac{n}{15}C_{2} + \frac{n}{15}C_{3} + \frac{n}{15}C_{4} + \frac{n}{15}C_{5}$$

$$(4)C_nH_{2n} + \frac{n}{3}H_2 \longrightarrow \frac{n}{15}C_1 + \frac{n}{15}C_2 + \frac{n}{15}C_3 + \frac{n}{15}C_4 + \frac{n}{15}C_5$$

Where n is the number of carbon atoms.

Catalytic Reforming Empirical Kinetic Model

$$\widehat{k}_{P1} = \exp\left(23.21 - \frac{34750}{T}\right), [=]\frac{moles}{(hr)(lb_cat.)(atm)}$$
$$K_{P1} = \frac{P_A * P_B^3}{P_N} = \exp\left(46.15 - \frac{46045}{T}\right), [=]atm^3$$

$$\widehat{k}_{P2} = \exp\left(35.98 - \frac{59600}{T}\right), [=] \frac{moles}{(hr)(lb_cat.)(atm)^2}$$
$$K_{P2} = \frac{P_P}{P_N * P_H} = \exp\left(\frac{8000}{T} - 7.12\right), [=]atm^{-1}$$

$$\hat{k}_{P3} = \hat{k}_{P4} = \exp\left(42.97 - \frac{62300}{T}\right), [=]\frac{moles}{(hr)(lb_cat.)}$$

Catalytic Reforming Rate Law Model

$$-\hat{r}_{1} = \hat{k}_{P1} \left(P_{N} - \frac{P_{A} * P_{H}^{3}}{K_{P1}} \right) = \frac{moles _napthene _converted _to _aromatics}{(hr)(lb_cat.)}$$

$$-\hat{r}_{2} = \hat{k}_{P2} \left(P_{N} * P_{H} - \frac{P_{P}}{K_{P2}} \right) = \frac{moles _napthene _converted _to _ paraffins}{(hr)(lb_cat.)}$$

$$-\hat{r}_{3} = \hat{k}_{P3} \left(\frac{P_{P}}{P} \right) = \frac{moles _ paraffins _converted _by _hydrocracking}{(hr)(lb_cat.)}$$

$$-\hat{r}_{4} = \hat{k}_{P4} \left(\frac{P_{N}}{P}\right) = \frac{moles_napthenes_converted_by_hydrocracking}{(hr)(lb_cat.)}$$

Excel Model

24	Microsoft Excel - Final Catalytic Reforming Model using GKS reforming data in Chapter 3-1.xls 📃 🖻 🔀																	
: 🗷	Eile Edit y	⊻iew	Insert Form	nat <u>T</u> ools	<u>D</u> ata <u>W</u> indow	Help)									Ty	pe a question for h	nelp 🗸 🗖 🗙
10	📂 🛃 🛛										- AB 100% -	🕜 🔤 Arial	-	10 - B I	표 트 클 클	a \$ %	, 🛊 🖂 -	<u> A</u> - A
	A104							1										
	A		Par	tial		N	Nr	at	'	2	G	Н	I	J	K	L	M	N 🗖
100				uai		/ V				5								
101																Mass Flowrate	of Cut Entering	g System (lb/h
102																Mass Flowra	ate of Recycle S	Stream (lb/hr)
103		-														lotal	Wass	(lb/hr)
104		P	K	X X (03)		>	X		X		X	X	X	X	X	X	X	X
105	#		V (lb.cat.)	∨ (π ²)	VPAR (vol 1	%) L	L (ft)		t (hr)		P (atm)	T (°R)	Δ1 (°R)	(lbmol /hr)	F _N (Ibmol /hr)	F _P (lbmol /hr)	F _A (lbmol /hr)	F _H (Ibmo (hr)
106		0	70,02945	24	0 10. 10 10	1%		0 60.4		0.017	39.9	1402.2	0	2111.397304	135.4309	72.013	24.8561	17 2.8
107	-	2	140.03049	<u>،</u> د عم	21 25	1 % 5 %		120.2		0.017	39.0990	1319.705234	-02.41470594	2224 02 1905	85 99622723	70.04720300	65 / 18683/9	712 97642
109		3	210.11535	102	21 23. 27.	0%		180.3		0.050	39,8988	1305,108981	-5.97160894	2231,938641		10.141/2112	00.900	1720.33151
110		4	280.1538	138	42 28.	1%		240.4		0.067	39.8984	1300.776467	-4.332514586	2237.345355	81.0884067	79.50914398	69.92873608	1725.66089
111	_	5	350,19225	170) <mark>52</mark> 28.'	9%		300.5		0.083	39.898	1297.53167	-3.244796309	2241.393687	79.51132855	79.64333756	71.33508876	1729.64420
112		6	420.2307	204	. <mark>63</mark> 29.1	5%		360.6		0.100	39.8976	1295.052693	-2.478976728	2244.485449	78.28217412	79.76020394	72.41531772	1732.67890
113	-	4	490.26915	235	73 3U. 1991 - 1991	0%		420.7		0.117	39.8972	1293.133852	-1.918841694	2246.87746	77.30613296	79.86523234	73.25733093	1735.01929
114	-	a	630,3076	272	30. 30. 30.	3% 6%		400.0 570.0		0.134	39.0960 39.8964	1291.63552	-1.496332073	2246.7441	76.51934467	80.05227529	73.92066766	1738.0301
116	1	10	700.3845	341	04 30.	8%		601.0		0.167	39.896	1289.531365	-0.927420147	2251.362222	75.34593338	80.13808636	74.86857118	1739.36859
117	1	11	770.42295	375	315 31.	0%		661.1		0.184	39.8956	1288.7992	-0.732164748	2252.271548	74.90224683	80.22037135	75.2068243	1740.23671
118	1	12	840.4614	409	9 <mark>25</mark> 31.	1%		721.2		0.200	39.8952	1288.221143	-0.578056767	2252.988313	74.52729796	80.29993145	75.47975275	1740.91350
119	1	13	910.49985	443	36 <mark>36</mark> 31.	3%		781.3		0.217	39.8948	1287.765449	-0.455694162	2253,552186	74.20685852	80.37736316	75.70083093	1741.43834
120	1	14	980.5383	477	'46 31.	4%		841.4		0.234	39.8944	1287.407367	-0.35808169	2253.994097	73.92985726	80.45311801	75.88055911	1741.84195
121		15 10	1050.57675	511 E 45	57 31. 197 - 21.	4% 5%		901.5		0.250	39,894	1287.127442	-0.279924978	2254.338362	73.68760487	80.52754239	76.02718829	1742.14848
122	1	17	1190.65365	579	77 31	5%	1	021.7		0.287	39,8932	1286 743639	-0.166641317	2254.804218	73 28129226	80.6734157	76 24591769	1742.57764
124	1	18	1260.6921	613		6%	1	081.8		0.301	39.8928	1286.617742	-0.125897478	2254.958828	73.10742374	80.74524029	76.32735019	1742.65801
125	1	19	1330.73055	647	'98 <mark>.</mark> 31.	6%	1	141.9		0.317	39.8924	1286.524755	-0.092986956	2255.069593	72.94814399	80.81650986	76.39486134	1742.73229
126	2	20	1400.769	682	2 <mark>09</mark> 31.1	7%	1	202.0		0.334	39.892	1286.458385	-0.06636934	2255.147127	72.80065446	80.88732879	76.4511172	1742.77349
127	#	<u> </u>	N (lb.cat.)	∨ (ft°)	VPAR (vol.)	%) <mark>l</mark>	L (ft)		t (hr)		P (atm)	T (°R)	∆T (°R)	FT	F _N	F _P	F _A	F _H
128			Fotal Generated	d From Read	ctor 1 (lbmol / h	r)						826.46	115.74	143.75	-62.63	8.87	51.60	139.9
129	4		% Difference Fr	rom GKS Da VZ (0 3)	ita						B(L)	1%	AT (°D)	F	9%	-b%	-2%	
130	#		/V (lb cat.)	v (ii)	VPAR (vol	%) L	L (ft)		t (hr)		P (atm)	T ("R)	51 (R)					FH
131	-	1	U 70.03845	3/	U 31. 110 31	7%		60 1		0.017	39.692 39.9916	1362,858,469	U 39 3416309	2255.147127	72.80065446	80.88732879	76.4511172	1742.77348
133		2	140 0769	66	321 39	3%		120.2		0.017	39 8912	1352 017993	-10 84047653	2318 094608	45 4571288	84 28596988	99 02386892	1803 27862
134		3	210.11535	102	231 41.	4%		180.3		0.050	39.8908	1345.545651	-6.472342023	2326.264097	42.10228203	84.58476754	101.9049529	1811.13667
135		4	280.1538	138	i <mark>42</mark> 42.	7%		240.4		0.067	39.8904	1341.248596	-4.297054806	2331.703374	39.82315956	84.79789158	103.8345527	1816.3331
136	-	5	350.19225	170	052 43. ⁻	5%		300.5		0.083	39.89	1338.252432	-2.996163628	2335.509711	38.17639889	84.96597077	105.197827	1819.93408
137	-	6	420.2307	204	63 44.	1%		360.6		0.100	39.8896	1336.108222	-2.144210049	2338.246664	36.93913172	85.10707573	106.1913823	1822.48840
138	-	6	490.26915	230	973 44. 100 44	6% a%		420.7 400.0		0.117	39,8892	1334.552781	-1.555441257 1.134139354	2340.244684	35,98265344	85.23066718	105.9300066	1824.31863
140		9	630,34605	308	.03 44. (94 45	1%		540.9		0.154	39 8884	1332 593241	-0.825401137	2342 796175	34 61510795	85 44522539	107.9097659	1826 56175
141	1	10	700.3845	341	04 45.	3%		601.0		0.167	39.888	1331.997949	-0.595292816	2343.589776	34.11258729	85.54187739	108.2337964	1827.2097
142	1	11	770.42295	375	5 <mark>15</mark> 45.	5%		661.1		0.184	39.8876	1331.576293	-0.421655355	2344.165802	33.69163381	85.63373814	108.4830411	1827.64361
143	1	12	840.4614	409	9 <mark>25</mark> 45.	6%		721.2		0.200	39.8872	1331.286878	-0.289415021	2344.576256	33.3326915	85.72189293	108.6753902	1827.91445
144	- 1	13	910.49985	443	45.	7%		781.3		0.217	39.8868	1331.098887	-0.187991297	2344.859855	33.02124501	85.80712316	108.8241515	1828.06018
145		14 15	980.5383	477	46 45. 57 45	6% 0%		841.4		0.234	39.8864	1330.989111	-0.10977622	2345.04576	32.74638718	85.89000111	108.9393422	1828.10940
146		19	1120.6152	51	57 45. 67 45	9%		961.6		0.250	39,8856	1330,935915	-0.049195956	2345,156131	32.49964472	86 05029237	109.0205706	1828.00016
14 4	🔹 🕨 👌 Inpu	ıt λ	Calculations /	Output / R	esults / Ranges	1		551.0		0.201	33,0000	1000.007000	<			00.00020207	100.0010000	>
Read	dy																N	IUM SCRL
	start	3	atalytic refe	ormina; D	Refinery O	perati	ions	B	ocumenti	- Microso	of	soft Excel - Einal					¢.	🗹 🚴 3:45 PM
		2																- ~

Excel Model

× 1	Microsoft Excel - Final Catalytic Reforming Model using GKS reforming data in Chapter 3-1.xls 📃 🖻 🔀													
:	<u>File E</u> dit <u>V</u> iev	v <u>I</u> nsert F <u>o</u> rm	at <u>T</u> ools <u>D</u> ata	a <u>W</u> indow <u>H</u> el	p							Ту	pe a question for h	elp 🗕 🗗 🗙
in.	🖻 🖬 🖪 🖨	1 🛋 🐧 🖤	🛍 🔏 📭 📪	L = 🥑 = (- Σ -		🛓 📣 100% 👻	🕜 📃 Arial		10 - B <i>I</i>	u 📄 🚍 🗄	-a- \$ %	, া 🗐 -	3 - A - "
	P103 -	fx				2, <u>2</u> At [2						,	1 - 7 1	
	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB 🚡
100														<u>^</u>
101	27118													
102	11271													
103	38389	l		x	x	X	X	X	X					
104		X	X	For now assum	e ideal gas wh	ere Part - res	sure = Total Pre	essure x Mole F	raction	X	X	X	X	
105	_{C1} (lbmol /hr)	F _{C2} (Ibmol /hr)	F _{C3} (Ibmol /hr)	F _{C4} (lbmol /hr)	F _{C5} (lbmol /hr)	Calc. (atm)	P _N (atm)	P _P (atm)	P _A (atm)	P _H (atm)	P _{C1} (atm)	P _{C2} (atm)	P _{C3} (atm)	P_{C4} (m)
106	107.4217292	92.07576788	76.72980657			39.9	2.559297059	1.360861215	0.469/16613	30.29013672	2.029995486	1.739996131	1.449996775	0.6 (0105
107	108 3531408	93.00717951	77.6612182	0.000350675	0.000350075	39,8992	1.524254055	1 419515329	1.172596204	30.7245819	1.952243551	1.668211345	1.3939034819	11670614
109	108.3837484	93.03778704	77.69182572	0.962019159	0.962019159	39.000	1.486651873	1.418450226	1.216631069	30.75315856	1.937500171	1.663171196	1.202	0.01719734
110	108.4079023	93.06194094	77.71597963	0.986173066	0.986173066	39.8984	1.446646	4 417880178	1.247033534	30.7735722	1.933229413	1.0000000000	1.385902822	0.01758634
111	108.4282137	93.08225244	77.73629112	1.006484557	1.006484557	39.898	1.415343946	1.417693777	1.200002020	20.70000000	4.930079886	1.656913611	1.383747336	0.01791596
112	108.4460384	93.10007708	77.75411577	1.024309202	1.024309202	8976	1.391530906	1.41/804118	1.287242643	30.79981198	1.92771874	1.654931484	1.382144229	0.0182075
114	108 4770761	93 13111475	77 78515343	1.055346869	1.040432769	39,8968	1.372704254	1.418668098	1.300010763	30.80627197	1.925935499	1.652314934	1.380049266	0.01872376
115	108.4911059	93.14514461	77.7991833	1.069376737	1.069376737	39.8964	1.345303066	1.419333808	1.319960971	30.81946731	1.923556751	1.651471521	1.379386291	0.01896014
116	108.504476	93.15851471	77.81255339	1.082746829	1.082746829	39.896	1.335192236	1.420113149	1.326732983	30.82304958	1.922789027	1.650845904	1.378902782	0.01918716
117	108.5173464	93.17138509	77.82542377	1.09561721	1.095617	39.8956	1.326780548	1.420983118	1.33217568	30.82567374	1.922221434	1.650390831	1.378560227	0.0194072
118	108.5298342	93.18387288	77.83791157	1.108105004	1.108107.304	39.8952	1.319705673	1.42192563	1.336571439	30.82754222	1.921811763	1.650070364	1.378328965	0.01962197
119	108.5420269	93.19606557	77.85010425	1.12029769	1.12029769	39.8948	1.313669471	1.422926368	1.340137374	30.82881096	1.921527481	1.649856799	1.378186118	0.01983271
120	108.5	_	_	_			1.304016007	1.425059268	1.34541855	30,83000881	1.921239151	1.649668657	1.378098164	0.02024569
122	108.5	Dort)raa		\sim	1.300056047	1.42617504	1.347370727	30.83010862	1.921199456	1.649663708	1.37812796	0.02044922
123	108.5			-1 e S	SUI	\mathbf{es}	1.296530165	1.4273154	1.348981837	30.82996072	1.921211647	1.649703038	1.378194429	0.02065138
124	108.6						1.293353917	1.428475625	1.350318098	30.82961291	1.921265738	1.649778135	1.378290533	0.02085252
125	108.6	93 07701400	77 93105071	1 201446141	1 2014/61/1	30,803	1.290459748	1.429651904	1.351432513	30.82910348	1.921353725	1.64988218	1.378410635	0.02105290
120	100.0201700	Foo	For	Fo4	For	Pr Calc	P.	P.	P.	P.,	Pot	P	Pop	Po4 =
127	1.20	1.20	1.20	1.20	1.20	r poulo.	' N	' P	' A	чн	· UI	· C2	· L3	
129	1.20	1.20	1.20	1.20	1.20									
130	C1	F _{C2}	F _{C3}	F _{C4}	F _{C5}	P _T Calc.	PN	Pp	P _A	Р _н	Pc1	P _{C2}	P _{C3}	P _{C4}
131	108.6231753	93.27721402	77.93125271	1.201446141	1.201446141	39.892	1.287793454	1.430841155	1.352367627	30.82846317	1.921469184	1.650009694	1.378550204	0.02125275
132	109.2393767	93.89341541	78.54745409	1.81764753	1.81764753	39.8916	0.883476706	1.450253983	1.630957551	30.98789433	1.891012257	1.625362619	1.35971298	0.03146478
133	109.3860723	94.04011099	78.69414968	1.964343117	1.964343117	39.8912	0.782254275	1.450444891	1.704063737	31.03192936	1.882382916	1.61830016	1.354217405	0.03380362
134	109.4833518	94.13739048	78.79142916	2.061622597	2.061622597	39.8908	0.721970353	1.45046044	1.747467151	31.05738987	1.877421611	1.614268913	1.351116215	0.03535272
136	109.5591885	94.21322724	78.93143156	2.157459358	2.107459358	39.8904 39.89	0.661268101	1.450708462	1.776384546	31.07353083	1.074320681	1.61023745	1.349248288	0.03656730
137	109.680403	94.33444165	78,98848034	2.258673775	2.258673775	39.8896	0.630167557	1.451894387	1.811584649	31.09095994	1.871106017	1.609309745	1.347513474	0.03853211
138	109.7328123	94.38685098	79.04088967	2.311083106	2.311083106	39.8892	0.613320167	1.452746866	1.822609597	31.0953002	1.870383096	1.60881296	1.347242824	0.03939214
139	109.7820686	94.43610728	79.09014597	2.360339402	2.360339402	39.8888	0.600039878	1.453721277	1.830927366	31.09782024	1.870029755	1.608626371	1.347222986	0.04020608
140	109.829126	94.48316466	79.13720334	2.407396777	2.407396777	39.8884	0.589356123	1.454788669	1.837269478	31.09900384	1.869948464	1.608668439	1.347388414	0.04098828
141	109.8746275	94.52866614	79.18270483	2.452898262	2.452898262	39,888	0.58059772	1.455926477	1.842143925	31.09918897	1.870070942	1.608882012	1.347693083	0.04174843
143	109.9626337	94.61667238	79.27071107	2.540904503	2.540904503	39 8872	0.567073785	1.45834723	1.848844546	31.09746986	1.870743829	1.609670031	1.348596233	0.04322724
144	110.0056981	94.65973681	79.3137755	2.583968936	2.583968936	39.8868	0.561701712	1.45960602	1.851132876	31.0958759	1.871231354	1.610191749	1.349152144	0.0439541
145	110.0483924	94.70243111	79.3564698	2.626663236	2.626663236	39.8864	0.55697655	1.460885326	1.852926818	31.09393616	1.871790425	1.610774132	1.349757839	0.04467637
146	110.0908502	94.74488885	79.39892753	2.669120968	2.669120968	39.886	0.552751601	1.462178711	1.854338613	31.09172635	1.872405676	1.611404284	1.350402893	0.04539593
147	110.1331733	94.78721203	79.44125072	2.711444153	2.711444153	39.8856	0.548914902	1.463481129	1.855454017	31.08930437	1.873065349	1.612072339	1.35107933	0.04611428
Doord.	 Fill Tubut > 	calculations (Calput X Resul	is <u>A</u> nanges /										IM SCDI
Ready			Y		1									SHI SCRE
- #9	start 🔰 🛔	🐔 catalytic refo	rming: D 🖉	Refinery_Operal	ions 🛛 🖭 D	ocument1 - Micros	of 🔀 Micro	osoft Excel - Final					()	🚄 🏂 3:47 PM

Excel Model

×	Microsoft Excel - Final Catalytic Reforming Model using GKS reforming data in Chapter 3-1.xls													
: 🖭	<u>Eile E</u> dit <u>V</u> ie	w Insert Forn	nat <u>T</u> ools <u>D</u> at	a <u>W</u> indow <u>H</u> e	lp							Tγ	pe a question for h	ielp
: 🗅	📂 🖬 🖪 🔒) 🖪 💁 🖤	🕰 X 🗈 🖻	L - 🛷 🖂 -	🤍 - 🤮 Σ -		📜 🛷 100% 🛛 🗕	🕜 🔤 İ Arial	-	10 - B I	⊻∣≣ ≣ ₹	a \$ %	, 🖅 🖂 -	🗞 - A - 📲
_	P103 🗸	fx												
	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	AN 🔨
100														
101											From Proll at 4	75ncia & 950°E	-	
102								x		x	1 Ioni I Ioni at 4	x	X	x
104	x	x	x	x	x	x	x				(BTU/Ibms, °F)		For now ass	e C _P does no
105	P _{C3} (atm)	P _{C4} (atm)	P _{C5} (atr	(-r1) (mol/ hr * l	(-r2) (mol/ hr *	(-r ₃) (mol/ hr * l	(-r4) (mol/ hr *	(mol/ hr * lt	k _{P2} (mol/ hr * ll	k _{P3} (mol/ hr * ll	k _{P4} (mol/ hr *	P1	Kp2	CP-Aura
106	1.449996775	0	0	0.526647336	0.105497996	0.007919401	0.014893587	0. 77528901	0.001466854	0.23219421	0.2321-21	604596.3716	0.243003417	18.0792848
107	1.399034619	0.01601229	0.01601.23	0.053473074	0.004720309	0.000515939	0.0005828	0.0441555	9.000103198	0.01448489		7788.4213	0.3470079 8	17.2443868
108	1.392960478	0.016706145	0.016706145	226715556	0.003323302	0.000376687	0.0 .409312	0.037073447	7.64644E-05	0.010587774	0.010587774	6176.	0.9947	17.1601712
109	1.38884222	0.017596245	0.017596245	0.0267055	0.000174022	0.000059024		0.03283931	6.2106E-05	0.008518822	0.008518822	62544.79864	0.371486149	17.1028685
111	1.383747336	0.017915961	0.01790554	0.020079723	0.002174233	0.000238234	0.000283383	0.0300323	4 75671E-05	0.007200373	0.007286373	407 15.20420	0.375146537	17.0307221
112	1.382144229	0.01820795	0.01820 25	0.012022156	0.001708544	0.000208962	0.00020509	0.026705	4.35634E-05	0.005880281	0.005880281	39953.1244	0.38959592	17.007262
113	1.380945266	0.018474685	0.01847 685	0.009471325	0.001573958	0.000194614	0.000188378	0.025663(9	4.06878E-05	0.005475159	0.005475159	37899.90435	0.393183525	16.9891566
114	1.38004974	0.018723768	0.0187 3768	0.007522011	0.001475337	0.000184106	0.00017618	0.0248754	3.85695E-05	0.005177561	0.005177561	36366.32334	0.396015368	16.975054
115	1.379386291	0.018960143	0.017 /60143	0.006011745	0.001401468	0.000176268	0.000167075	0.0242725 2	3.69803E-05	0.004954773	0.004954773	35203.17063	0.398258339	16.9640040
110	1.376902762	0.01910/169	0.0 0107169	0.004029535	0.001345203	0.000170349	0.000160162	0.0236070 0	3.97722E-05 3.48451E-05	0.004765692	0.004705692	33622 30348	0.400037945	16.9553138
118	1.378328965	0.019621971	r 019621971	0.003156526	0.001267951	0.000162391	0.000150717	0.0231633 12	3.41295E-05	0.004556221	0.004556221	33087.58132	0.402570066	16.9430764
119	1.378186118	0.019832712	1.019832712	0.002566136	0.001241367	0.000159749	0.000147485	0.022943387	3.35753E-05	0.004478912	0.004478912	32671.71845	0.403455701	16.938837C
120	1.378113855	0.020040381	0.020040381	0.002093553	0.001220353	0.000157732	0.000144942	0.022771779	3.31459E-05	0.004419047	0.004419047	32348.40332	0.404153436	16.9355160
					1203661	0.000156201	0.000142933	0.022638493	3.28138E-05	0.004372784	0.004372784	32097.76268	0.404699991	16.9329297
	Data	of E		tion	1190363	1 0.000155053		0.022535591	<u>3.25584E-U5</u>	310106	0.004337213	31904.58328	0.405124674	16.9309331
	rale		(eac	lion	1171184					289735	0.004289735	31646.08608	0.405697696	16.9282705
		-			1164341	R	ate ()	onsi	ants	<mark>274748</mark>	0.004274748	31564.33465	0.405880062	16.927439
126	1.378550204	0.021252755	0.021252755	0.000673155	0.001158844					<mark>264082</mark>	0.004264082	31506.10665	0.406010292	16.9268571
127	P _{C3}	P _{C4}	P _{C5}	(-r ₁)	(-r ₂)	(~13)	(14)	<u>66</u> 1	NP2	NP3	к _{Р4}	K _{P1}	Kp2	Cp-Awg ≡
128														
130	Pc2	Pc4	Pcs	(-ra)	(-ra)	(-12)	(-ta)	kp1	Keo.	kez				
131	1.378550204	0.021252755	0.021252755	0.253653592	0.049598047		0.007495693	0.207528901	0.001466854	1		~ilik	~riuw	
132	1.35971298	0.031464787	0.031464787	0.06863726	0.009596641	0.002341015	0.001426117	0.101481501	0.000430048	0.			DHUH	
133	1.354217405	0.033803626	0.033803626	0.041135747	0.005889073	0.001622879	0.000875251	0.082717783	0.000302856	O.				-
134	1.351116215	0.035352725	0.035352725	0.027550578	0.004343227	0.00130027	0.000647213	0.073098024	0.000244989	0.	\sim			
135	1.349248288	0.036667306	0.036567305	0.019464666	0.003521031	0.001121218	0.00045419	0.067293313	0.000212577	U.		onsi	rants	
130	1 347513474	0.037503270	0.037603270	0.014105055	0.003023507	0.001010023	0.00045410	0.080300343	0.000132440					
138	1.347242824	0.039392144	0.039392144	0.007945849	0.002482436	0.000889408	0.00037549	0.059090483	0.000170095	0.024421167	0.024421167	114439.9157	0.324495861	16.3113513
139	1.347222986	0.040206064	0.040206064	0.006043028	0.002325773	0.000855367	0.000353063	0.057796181	0.000163755	0.023470508	0.023470508	111130.3807	0.326154571	16.3011162
140	1.347388414	0.040988289	0.040988289	0.004626466	0.002211572	0.000831587	0.000336888	0.056870728	0.000159283	0.02280102	0.02280102	108778.691	0.327368858	16.2935869
141	1.347693083	0.041748435	0.041748435	0.003558684	0.002126613	0.000815037	0.000325022	0.056211789	0.000156131	0.022329562	0.022329562	107111.8014	0.328248366	16.2880695
142	1.346103617	0.042493169	0.042493169	0.002746335	0.002062382		0.000316214	0.055749326	0.000153935	0.022001283	0.022001283	105945.7089	0.326873242	16.284067
144	1.349152144	0.04395412	0.04395412	0.001644678	0.001975032	0.000791711	0.000304675	0.055229958	0.000151483	0.021635175	0.021635175	104639.8768	0.329582653	16.2792471
145	1.349757839	0.044676374	0.044676374	0.001273992	0.001945159	0.00078936	0.000300951	0.055111166	0.000150925	0.021551819	0.021551819	104341.7618	0.329746066	16.2779566
146	1.350402893	0.045395937	0.045395937	0.000986391	0.001921521	0.000788701	0.000298155	0.055058006	0.000150675	0.021514564	0.021514564	104208.4221	0.329819334	16.2771905
147	1.35107933	0.046114281	0.046114281	0.000762677	0.001902623	0.000789353	0.000296066	0.055055731	0.000150665	0.021512969	0.021512969	104202.7149	0.329822472	16.2768310
Deve	► ► \	A Calculations (Output X Resu	itts (Kariyes /					1			1		
Read	, , , , , , , , , , , , , , , , , , ,		Y		Y				_				N	ON BORE
1	start	Start 🔰 🖗 catalytic reforming: D 🛛 🚇 Refinery_Operations 🖉 Document 1 - Microsof 💌 Microsoft Excel - Final												

GAMS Model

💼 gamside: C	: \Documents and Settings\kupe0527\My Documents\gamsdir\projdir\gmsproj.gpr - [H:\Refinery Operations Planning\CRU2-1.gms]	
File Edit Se	varch Windows Utilities Help	- 8 ×
0 3 2	🦻 🙀 🖃 🙆 🕒 📔	- I 👪
CRU2-1.gms		
Set	y / D*65 /	
	s / 1*10 /	
	v/t, p, f/;	
Scalar		
SUGLAR	feed flow rate of cut entering (lbmol.hr) / 232.3 /	
	rltemp rankine / 1402.2 /	
	r2temp / 1402.2 /	
	r3temp	
	ripres dom / 37.7 / ripres / 39.892 /	
	r3pres	
	par paratin / 0.51/ nan nanthene / 0.583/	
	aromatics / 0.107 /	
	apigravity / 54.3 /	
	cp btu.lbF / 0.731 /	
	H2feed ratio / 6.90 /	
	hydmol hyd mol in recycyle / 0.853 /	
	meth_prop meth.prop / 1.4 /	
	eth_prop eth.prop / 1.2 /	
	recycle_cp btu.lbF / 1.628 /	
	recycle_mpth_bmol.hr	
	recycle eth	
	recycle_prop	
	ridiam ft / 8.5 /	
	r2diam ft / 8.5/	
	r3diam ft / 8.5 /	
	rivel ft.hr / 3600 /	
	r2vel ft.hr / 3600 /	
	r3vel ft.hr / 3600 /	
	drop pres drop per reactor / 0.4 /	
	r1cat_feed weight cat per flow (lb.lbmol.hr) / 6.03 /	
	r2cat_feed weight cat per flow (lb.lbmol.hr) / 6.03 /	
	r3cat_feed weight cat per flow (lb.lbmol.hr) / 9.9 /	
	ricat mass (1b)	
	r2cat	
	rscat	
<	Ш	
1: 1	I Insert	
n start	🗱 Refinery_Operations 🖉 Document1 - Microsof 📓 Microsoft Excel - Final	🔕 🔛 🔏 3:53 PM

Catalytic Reforming Model Results

- Increased Temperature Dependence
 - Endothermic reactions
 - Increase rate constant
 - Increase equilibrium constant
 - Increase concentration of aromatics

Catalytic Reforming Model Results

- Decreased Pressure
 Dependence
 - Increase overall reaction rate for hydrocracking
 - Increases
 concentration of aromatics

Isomerization

- Gas-phase catalyzed reaction
- Transforms a molecule into a different isomer
- Transforms straight chained isomers into branched isomers
- Increases octane rating of gasoline

Isomerization Unit

- 2 types of catalysts most commonly used
 - Platinum/chlorinated alumina
 - Platinum/zeolite

Isomerization Unit

- Feeds
 - Butanes
 - Pentanes
 - Hexanes
 - Small amounts Benzene
 - Make-up Hydrogen
- Products
 - Branched alkanes

Isomerization Unit

recycle

Isomerization

Isomerization Model

Goal

- To create a model that determines the products of the isomerization unit
- Model inputs
 - Temperature (range depends on catalyst used)
 - Mass flow rate
 - H₂/HC ratio (typical values 0.1-4)
 - Feed stream concentrations
- Model outputs
 - Product weight percents

Isomerization Model

- Modeling
 - Determine feed partial pressures
 - N-Butane kinetic model
 - N-Pentane kinetic model
 - N-Hexane kinetic model

Isomerization – Partial Pressures

- Antoine Equation
 - $-\log_{10}P_{o}=A-B/(T+C)$
 - $-T = temperature in \mathfrak{C}$
 - $-P_o = vapor pressure in mmHg$
- Partial Pressure
 - Used to determine mole fraction each component

Isomerization – N-Butane Model

• Bursian (1972)

•
$$r_{nC4} = -K_1 \frac{P_{nC4}}{P_{H2}} + K_2 \frac{P_{iC4}}{P_{H2}}$$

•
$$K = Ae^{\frac{-E}{RT}}$$

Isomerization - N-Pentane Model

Aleksandrov (1976)

n-pentane	E (kcal/mol)	E (J/mol)	Α
K1	10.1	42.2887	4023.872
K2	119.5	500.3465	7331.974

•
$$r_{nC5} = -[K_2(\frac{C_{nC5}}{H_2})^{0.125} - 0.0000197t][K_{eq}C_{nC5} - (K_{eq} + 1)C_{iC5}]$$

Isomerization - N-Hexane Model

• Cheng-Lie (1991)

•
$$\frac{dC_i}{dt} = -\left(\sum_{j=1}^5 K_{j,i}\right) \cdot C_i + \sum_{j=1}^5 K_{i,j}C_j$$

n-Hexane	1
3-MP	2
2-MP	3
2,3-DMB	4
2,2-DMB	5

Isomerization Model

- Rate equations solved using finite integration
- Output concentrations of various isomers in product stream

Isomerization Model - Excel

🛛 1	Microsoft Excel - Isomerization Unit Shobe-1																		
8	<u>File E</u> dit	View Insert Format To	ools <u>D</u> ata <u>W</u> ind	ow <u>H</u> elp													Type a question	on for help 🔍	. 8 ×
n	2 🗖 🖉	n 🖷 🖪 🗅 🖤 🗼 🗈	n 🖻 • 🛷 🗠	- Ci + 🎑 🗴	E - ≜l Zl M	100% -	2												
-																			
					D <u>r</u> aw ▼ 🕞	AutoShapes -		🗑 🖪 🗘 🕼 🖉	🗟 🖄 • 🚄 • 🗛 •	≡ ☴ ☴ ◘ ∅	•								
	L53																		
	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	
1		Inputs					Mass (g)	4800000	Mass(kg)	4800		Octane	81.69696	After Iso					
		Inlet Mass Flow Rate																	
2		(g/s)	16000				Pressure (atm)	28.06504807					71.6364	Before Iso					
3		Temperature (K)	400	Temperature (126.85		Volume (L)	/1/45.35082											
4		nz/nc dt (sec)	2.4	dt/hr)	0.00/166667		Time (mine)	0.0020575											
6		ut (sec)	13	ut(iii)	0.004100007		Time (sec)	300	15										
7					v	~	nine (sec)		15		Drodu	et Valuer					Convorsions		
1		Feed Comments		883.07	× .	x	Constantion	× .	X Deutle I Decembra (et	Concentration	Mala Frend	Malas	Mara (a)	104-07	Value F	Dutana	Dentenas		
0		Feed Components	W1%**	1VIVV 68.08	moles	mole fraction	Concentration	21 3/8	Partial Pressure (at	0.073247324	0.00260001	102 /1272	Mass (g)	0.233	5 619922	Dutanes	Pentanes	nexanes 0.59	
10	r	C4	0.4	58.08	330 579	0.000	0.004607665	23 350	0 125827934	0.05258061	0.00187353	138 1412	8023.24	0.255	4 033473	0.50	0.33	0.33	
11		Isopentane	19.6	72.15	13039.501	0.213	0.181746983	12.018	2.554591178	0.181746983	0.00101000	13039.5	940800	19.603	432.0191				
12	(n-pentane	28.5	72.15	18960.499	0.309	0.264274949	10.308	3.185992459	0.264274949		18960.5	1368000	28.504	628.191				
13	C C	cyclopentane	1.4	70.13	958.220	0.016	0.013355854	7.375	0.115192343				67200	1.400	30.85851				
14	1	dimethyl-2,2-butane	0.9	86.18	501.276	0.008	0.006986883	6.898	0.056362551	0.006826403		489.7627	42207.75	0.879	17.65111				
15		2,3-dimethylbutane	2.2	86.18	1225.342	0.020	0.017079048	5.762	0.1151016	0.020985851		1505.637	129755.8	2.704	54.26336				
16		2-methyl pentane	13.1	86.18	/296.356	0.119	0.101697969	5.568	0.662283794	0.113493286		8142.616	/01/30.6	14.621	293.4609		44.00054404		
17		3-metnyi pentane	10.2	86.18	10359 712	0.093	0.079184678	5.160	0.477879903	0.064397186		4620.199	887512.2	8.295	371 154		41.20951181		
19	r r	methylcyclopentane	2.8	84 16	1596 958	0.026	0.022258699	4 179	0 108795343	0.145540500		10230.33	134400	2 800	56 20554				
20		cyclohexane	0.4	84.16	228.137	0.004	0.003179814	3.332	0.012391276				19200	0.400	8.029363				
21	C	benzene	1.9	78.11	1167.584	0.019	0.016274005	3.478	0.066195614				91200	1.900	38.13947				
22		Sum	100		61345.298	1.000	0.855042137	123.358	8.254425904				4799375		2106.137				
23		Hydrogen			43302.563		0.603559156		19.81062217										
24																			
25																4 77005 00	4 77005 00		1.040
20		1	Conversion Dre	aaaaaa Tabla (4.7788E-09	-4.7766E-09	1	1.316
28			Conversion Pro		0.0														
29							Concentra	tions									Chan	ge in Conce	antr
30	ime (hr)	Time (sec)	i-C4	C4	Isopentane	n-pentane	dimethyl-2.2.h	2.3-dimethylbu	2-methyl pentane	3-methyl pentane	n-c6		Time (sec)	i-C4	C4	Isopentane	n-pentane	dimethyl-2 12	3-di
31	0	000	0 0	0.125827934	0.181746983	0.264274949	0.006986883	0.017079048	0.101697969	0.079184678	0.14439559		0	0.00839368	-0.00839	1.99117E-11	-1.99117E-11	-8.111E-06 0	0.000
32	0.004167	15	0.008393682	0.117434253	0.181746983	0.264274949	0.006978773	0.01727654	0.102531303	0.078200708	0.14435261		15	0.0075463	-0.00755	1.99117E-11	-1.99117E-11	-8.102E-06 0	J.000
33	0.008333	30	0.015939985	0.109887949	0.181746983	0.264274949	0.006970671	0.017473837	0.103333586	0.077247861	0.14430966		30	0.00678447	-0.00678	1.99117E-11	-1.99117E-11	-8.092E-06 0	J.000
34	0.0125	45	0.022724457	0.103103477	0.181746983	0.264274949	0.006962579	0.017670934	0.104105852	0.07632511	0.14426673		45	0.00609955	-0.0061	1.99117E-11	-1.99117E-11	-8.083E-06	0.00
35	0.016667	60	0.028824008	0.097003926	0.181746983	0.264274949	0.006954495	0.017867823	0.1048491	0.075431464	0.14422382		60	0.00548378	-0.00548	1.99117E-11	-1.99117E-11	-8.074E-06 0	1.000
36	0.020833	75	0.034307783	0.091520151	0.181746983	0.264274949	0.006946421	0.018064501	0.105564295	0.074565964	0.14418094		75	0.00493016	-0.00493	1.9911/E-11	-1.9911/E-11	-8.065E-06 0	1.000
38	0.025	90	0.039237948	0.0000009986	0.101/40983	0.264274949	0.000930356	0.018/57195	0.106252371	0.07291672	0.14413609		90	0.00443244	-0.00443	1.9911/E-11	-1.9911/E-11	-0.050E-06 0	1,000
39	0.033333	105	0.047655362	0.078172573	0.181746983	0.264274949	0.006922253	0.018653203	0.107550748	0.072129211	0.14405325		105	0.00358267	-0.00358	1.99117E-11	-1.99117E-11	-8.038E-06 0	000
40	0.0375	135	0.051238032	0.074589903	0.181746983	0.264274949	0.006914216	0.018848977	0.108162766	0.071367317	0.14400966		135	0.00322098	-0.00322	1.99117E-11	-1.99117E-11	-8.029E-06 0	0.000
41	0.041667	150	0.054459016	0.071368918	0.181746983	0.264274949	0.006906187	0.019044512	0.108751101	0.070629227	0.14396689		150	0.00289581	-0.0029	1.99117E-11	-1.99117E-11	-8.019E-06 0	0.000
42	0.045833	165	0.057354828	0.068473106	0.181746983	0.264274949	0.006898168	0.019239805	0.109316543	0.069914157	0.14392415		165	0.00260347	-0.0026	1.99117E-11	-1.99117E-11	-8.01E-06 0	J.000
43	0.05	180	0.059958295	0.065869639	0.181746983	0.264274949	0.006890157	0.019434851	0.109859855	0.069221347	0.14388143		180	0.00234064	-0.00234	1.99117E-11	-1.99117E-11	-8.001E-06 0	1.000
44	0.054167	195	0.062298932	0.063529002	0.181746983	0.264274949	0.006882156	0.019629646	0.110381774	0.068550066	0.14383872		195	0.00210434	-0.0021	1.99117E-11	-1.99117E-11	-7.992E-06 0	1.000
45	0.058333	210	0.064403271	0.061424663	0.181746983	0.264274949	0.006874164	0.019824185	0.110883015	0.067899604	0.14379604		210	0.0018919	-0.00189	1.99117E-11	-1.99117E-11	-/.983E-06	0.00
46	0.0625	225	0.066295168	0.059532766	0.181746983	0.264274949	U.UU6866181	0.020018465	0.111364267	0.067269276	0.143/5338		225	0.0017009	-0.0017	1.9911/E-11	-1.9911/E-11	-7.974E-06 0	1.000

Isomerization Model - GAMS

File Edit Search Windows Utilities Help Image: Search Windows Ut	 	1 ×
iso unit ams		
<pre>*Exlex Step 20 conciC4('20') =conciC4('19') +rate_iC4('19') *step; concC4('20') =conciC4('19') +rate_iC4('19') *step; conciC5('20') =conciC5('19') +rate_iC5('19') *step; conciC5('20') =conciC5('20') +rate_iC5('20') /phyd+utxE*conciC4('20')/Phyd; rate_iC5('20') =-tate_iC5('20') /phyd+utxE*conciC4('20')/Phyd; rate_iC5('20') =-tate_iC5('20') /concHyd) **0.125-0.0000197*step/3600) * (pentKeq*concC5('20') - (pentKeq*1) *conciC5('20')); rate_iC5('20') =-tate_iC5('20') +hexK_3DP_2D5*conc3DF('20') +hexK_2DP_2D5*conc2DF('20') +hexK_2DDB *z0nc2DF('20') +hexK_2DDB</pre>	B_22DB*conc22DB B_23DB*conc22DB *conc22DB('20')- *conc22DB('20')- 2DB('20')-concCf	

Isomerization Model Results

Temperature Increase

- Pt/Chlorinated Alumina 120-180°C
- Pt/Zeolite 250-270℃

Isomerization Model Results

• H₂/HC Ratio increase

- Range 0.1-4

Modeling Unit Operations

- Excel
 - Excel is not used for overall model due to the problem being too complex for Excel's Solver
- CPLEX
 - CPLEX is a MIP mathematical optimization program
- GAMS
 - User interface for CPLEX

Option #1 (NLP)

- Model each unit in Excel
- Transfer to GAMS (NLP)
- Add NLP directly into GAMS model

Option #1 (NLP)

Problems

- Non-linearities in overall model create difficulty to determine global optimum
- Added one unit (HDS)
 - Overall model converged
 - GRM changed (because operating costs were added)
 - Recommendations remained the same
- Added second unit (NPU2)
 - Overall model did not converge
- Did Not Use

Linearization of a Non-Linear Problem

• For example, a CSTR has the following equations:

$$X = \frac{V \cdot (-r_A)}{F_{A0}} - r_A = k \cdot C_A^{0.5} \cdot C_B^2 \qquad k = k_0 \cdot e^{-\frac{E}{R \cdot T}}$$

• X can be shown as a function of the input variables:

$$X = f(T, C_{A0}, C_{B0})$$

Linearization of a Non-Linear Problem

To linearize, discretize the input variables
 Where Z is a binary variable

$$X = \sum_{(T,C_{A0},C_{B0})} Z(T,C_{A0},C_{B0}) \cdot f(T,C_{A0},C_{B0})$$

 $\sum Z(T, C_{A0}, C_{B0}) = 1$

 (T, C_{A0}, C_{B0})

T =	C _{A0} =	C _{B0} =
500 F	0.92 mol/L	0.50 mol/L
600 F	0.94 mol/L	0.55 mol/L
700 F	0.96 mol/L	0.60 mol/L
800 F	0.98 mol/L	0.65 mol/L
900 F	1.00 mol/L	0.70 mol/L

$$X = \frac{V \cdot (-r_A)}{F_{A0}} \qquad -r_A = k \cdot C_A^{0.5} \cdot C_B^2 \qquad k = k_0 \cdot e^{-\frac{E}{R \cdot T}}$$

Non-Linearities in Unit Operations

• CSTR

$$X = \frac{V \cdot (-r_A)}{F_{A0}} \qquad -r_A = k \cdot C_A^{0.5} \cdot C_B^2 \qquad k = k_0 \cdot e^{-\frac{E}{R \cdot T}}$$

Catalytic Reformer

Option #2 (MIP)

- Take Excel model
- Write MIP utilizing table of possible variables
- Add MIP directly into GAMS model

Option #2 (MIP)

- Did not attempt to use
 - Overall model would theoretically work
 - Model would become extremely long
 - Would require more memory and resources
 - Less user friendly than option #3
Option #3 (MIP Brute Force)

- Take Excel model
- Model MIP in GAMS
- Have MIP write to an overall table
- Utilize binary variables in overall model to select variables based on the table and constraints

Table Generation

 $X = \sum Z(T, C_{A0}, C_{B0}) \cdot X(T, C_{A0}, C_{B0})$ (T, C_{A0}, C_{B0})

		C _{B0} =						
T =	C _{A0} =	0.50 mol/L	0.55 mol/L	0.60 mol/L	0.65 mol/L	0.70 mol/L		
500 F	0.92 mol/L	0.74	0.22	0.75	0.54	0.93		
500 F	0.94 mol/L	0.10	0.39	0.79	0.32	0.38		
500 F	0.96 mol/L	0.72	0.70	0.06	0.28	0.22		
500 F	0.98 mol/L	0.54	0.57	0.53	0.24	0.22		
500 F	1.00 mol/L	0.91	0.41	0.80	0.66	0.97		
600 F	0.92 mol/L	0.33	0.12	0.09	0.77	0.08		
600 F	0.94 mol/L	0.04	0.70	0.78	0.79	0.58		
600 F	0.96 mol/L	0.48	1.00	0.00	0.52	0.24		
600 F	0.98 mol/L	0.86	0.40	0.85	0.10	0.27		
600 F	1.00 mol/L	0.15	0.42	0.91	0.72	0.59		
700 F	0.92 mol/L	0.00	0.62	0.69	0.29	0.85		
700 F	0.94 mol/L	0.73	0.78	0.47	0.93	0.55		
700 F	0.96 mol/L	0.83	0.45	0.46	0.54	0.64		
700 F	0.98 mol/L	0.94	0.43	0.69	0.25	0.88		
700 F	1.00 mol/L	0.25	0.01	0.61	0.26	0.07		
800 F	0.92 mol/L	0.25	0.64	0.55	0.40	0.68		
800 F	0.94 mol/L	0.37	0.87	0.14	0.31	0.96		
800 F	0.96 mol/L	0.52	0.58	0.37	0.61	0.71		
800 F	0.98 mol/L	0.46	0.20	0.17	0.99	0.37		
800 F	1.00 mol/L	0.04	0.82	0.81	0.81	0.86		
900 F	0.92 mol/L	0.83	0.39	0.50	0.57	0.10		
900 F	0.94 mol/L	0.27	0.52	0.35	0.81	0.96		
900 F	0.96 mol/L	0.71	0.09	0.63	0.45	0.03		
900 F	0.98 mol/L	0.61	0.47	0.30	0.29	0.09		
900 F	1.00 mol/L	0.30	0.35	0.52	0.84	0.02		

Option #3 (MIP Brute Force)

Currently being used

- Offers ease of use for the overall model
- Drawback more files are required to run the model
 - 26 tables utilized

Specific Modeling Issues

- "Best Choice" scenario
- Mass Balance
- Blending
- Additions

"Best Choice" Scenario

- Unit operations flow rates chosen by which scenario is nearest to the actual flow rate
- Allows for degrees of freedom in crude purchasing

"Best Choice" Scenario

 $F_{overall} - F_{unit} \le d$

 $F_{unit} - F_{overall} \leq d$

$$d = \frac{F2 - F1}{2} e.g. = \frac{16000 - 15000}{2} = 500$$

- F = flow rates
- d = difference between discretized unit flow rates

Mass Balance (CRU2, CRU3, ISOU)

Solving the mass balance (2 options)

- $-F_{overall} = F_{out}$
 - Requires a non-linear equation (Z*F_{overall})
 - Linearization possible, but requires massive amounts of memory (takes the program a long time to run)

Linearization of Z*F_{overall}

$$\begin{split} &\Gamma(a,b,c) - x \cdot Z(a,b,c) \leq 0 \\ &\Gamma(a,b,c) \geq 0 \\ &\left(F_{overall} - \Gamma(a,b,c)\right) - x \cdot \left(1 - Z(a,b,c)\right) \leq 0 \\ &F_{overall} - \Gamma(a,b,c) \geq 0 \end{split}$$

$$x = 1 \cdot 10^{10}$$

where $\sum_{(a,b,c)} \Gamma(a,b,c) = \sum_{(a,b,c)} Z(a,b,c) \cdot F_{overall}$

Mass Balance (CRU2, CRU3, ISOU)

Successful solution

- Advantage requires far less memory
- Disadvantage mass is not completely balanced
 - Model not based on mass flow rates
 - Volumetric balances are inexact
 - If large amount of flow rate scenarios used, the error is minimized
 - Large amounts of scenarios does not slow down model

 $F_{reformate,out} = F_{reformate,unit}$

Blending Model

 $F_{a} \cdot ON_{a} + F_{b} \cdot ON_{b} + F_{c} \cdot ON_{c} \ge F_{tot} \cdot ON_{x}$ x = ISOG, SUPG $ON_{SUPG} = 91$ $ON_{ISOG} = 95$

ON_a dependant on Z, therefore Z*F appears again
 Linearization used (only 3 required this time)

Linearization of Z*F_{overall}

$$\begin{split} &\Gamma(a,b,c) - x \cdot Z(a,b,c) \leq 0 \\ &\Gamma(a,b,c) \geq 0 \\ &\left(F_{overall} - \Gamma(a,b,c)\right) - x \cdot \left(1 - Z(a,b,c)\right) \leq 0 \\ &F_{overall} - \Gamma(a,b,c) \geq 0 \end{split}$$

$$x = 1 \cdot 10^{10}$$

where $\sum_{(a,b,c)} \Gamma(a,b,c) = \sum_{(a,b,c)} Z(a,b,c) \cdot F_{overall}$

Additions

- Revised Fuel Balance

 Fuel Gas and Fuel Oil burned

 Added Operating Costs associated with compression
- Added Hydrogen Balance

- Executed using CPLEX
 - Approximately 50 minutes to reach integer solution
 - Approximately 2 hours to reach optimal solution

It Works!

Planning

- Currently planning is optimized and then unit operations are optimized
- Planning is highly dependent on unit operations
 - e.g. turnarounds, unit capacities

GRM has increased

Optimizing unit operations is more efficient

	GRM
Model without Unit Operations	\$16,492,336.72
Model with Unit Operations	\$34,130,901.06

Purchased crudes and intermediates

Model without Unit Operations				Model with Unit Operations			
	1	2	3		1	2	3
Oman (OM):	167734.3	167339.3	165082.6	Oman (OM):	244486.2	262303.1	267899.8
Tapis (TP):	13427.7	14317	19397.5	Tapis (TP):	32853.3	41126.2	47392.2
Labuan (LB):	0	0	0	Labuan (LB):	0	0	9041.4
Seria Light (SLEB):	95392.2	95392.2	95392.2	Seria Light (SLEB):	95392.2	95392.2	95392.2
Phet (PHET):	57235.3	57235.3	57235.3	Phet (PHET):	57235.3	57235.3	57235.3
Murban (MB):	95392.2	95392.2	95392.2	Murban (MB):	95392.2	95392.2	95392.2
MTBE:	13662	13700.7	13921.7	MTBE:	18266	19392.8	20404.2
DCC:	68088	68301.8	69523.2	DCC:	87059.5	91153.7	93941.2

Discussion

Discussion

- Optimizing unit operations adds another dimension to optimize refinery processing
- Can provide more thorough insight for decision making

Acknowledgments

- Dr. Miguel Bagajewicz
- DuyQuang Nguyen
- Mike Mills
- Sunoco Refinery (Tulsa, OK)
 John Paris

Please, No Questions!

....Just Kidding